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We provide a physically meaningful picture of the nature of the ground state of the Cr8Ni compound in the
regime where it is a spin singlet. According to this picture, the anisotropy of the Ni atom in the Cr ring induces
a dimerization in the molecule that makes the ground state to stabilize in a valence bond solid phase of virtual
spins. We characterize rigorously this phase by means of a particular nonlocal order parameter that denoted the
generalized string order parameter. In the completely antiferromagnetic regime, the system becomes frustrated.
We have performed a numerical real-time evolution study of the correlations between the spin of the Ni
impurity and the rest of the spins in order to show the reaction of the system under this frustration.

DOI: 10.1103/PhysRevB.79.115141 PACS number�s�: 75.10.Jm, 75.50.�y, 74.20.Mn

I. INTRODUCTION

Recently, the physics of ring-shaped molecular magnets,
with antiferromagnetic interactions and an odd number of
interacting spin centers �e.g., paramagnetic ions�, has at-
tracted a great deal of interest since they provide emblematic
examples of systems where spin frustration effects due to
quantum magnetism play a major role. Moreover, they have
been synthesized and studied experimentally.1–5 Specifically,
we shall concentrate on the anomalous magnetic properties
in some heterometallic odd spin rings,6–9 namely, chromium
rings. The system comprises eight chromium�III� ions with
spin S= 3

2 each and one nickel�II� ion with spin S=1. The
magnetic properties of this first odd-member antiferromag-
netic ring have been investigated with electron paramagnetic
resonance �EPR�, and its spin frustrated properties have been
visualized by means of a Möbius strip. In this paper we
propose an alternative and complementary picture of the
ground state of this Cr8Ni ring molecule using valence bond
states �VBS� �Refs. 10–18� of virtual spins which are used to
represent the spins S= 3

2 ,1 of the real constituent ions. We
will show that the particular bond pattern acquired by these
VBS states is a consequence and manifestation of the spin
frustration in the odd Cr8Ni ring molecule.

Molecular nanomagnets are fascinating new magnetic
materials.19–21 They appear in a large variety of compounds
with many different properties. We shall focus on antiferro-
magnetic compounds of bimetallic rings. These molecules
are ideal candidates to study the physics of simple but non-
trivial spin models such as the AF Heisenberg interaction.
The key point here is that these molecules show very inter-
esting finite-size quantum many-body effects which are typi-
cally overlooked in other studies of the Heisenberg model
where the main focus is to achieve the thermodynamic limit
�number of spins going to infinity�. In those studies, the
small finite-size effects are considered spurious effects that
vanish for larger and larger systems, which eventually may
show some sort of universality, if that is the case. Quite on
the contrary, the nice thing about these small molecules is
that we can vary their size and coupling constant strengths
such that the finite-size effects become some real property
that can be addressed experimentally, theoretically, and nu-

merically. Some interesting examples of these small quantum
effects that we study in this paper are level crossing, change
in the nature of their the ground state �e.g., from spin singlet
to spin triplet or higher�, existence of excited states very
close to the ground state, etc.

In Sec. II we introduce a Heisenberg Hamiltonian to de-
scribe the interactions between the two types of ions in the
bimetallic compound Cr8Ni, where the Ni ion plays the role
of an impurity within an homogeneous chain of Cr ions with
the shape of a ring molecule. In Fig. 1 we present the energy
spectrum of this Hamiltonian obtained numerically with an
appropriate Lanczos technique. In Sec. III, we first provide
the VBS picture for the Cr8Ni ring molecule based on a
strong coupling limit in the Ni impurity coupling. This is the
origin of the spin frustration in the system. In order to sup-
port this VBS picture, we provide numerical results for a
generalized string order parameter �SOP� that is able to de-
tect the type of virtual bond structure. In Sec. IV we study
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FIG. 1. �Color online� Energy spectrum of some of the lowest
lying states in each sector with well-defined total spin. In the cou-
pling region shown, the spectrum is highly dependent on the values
of J and J�. In particular, in the antiferromagnetic region J�
�0 K the ground state is a triplet for J��1.5 K and a singlet
elsewhere. Inset: energy gap as a function of J� from the singlet
ground state to the first excited states. The legend shows the total
spin of each of these excited states.
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the frustration effects in this ring molecule by means of a
numerical study of time-evolved correlation functions of
spin-spin operators for different ions in the nanomolecule.
Sec. V is devoted to conclusions.

II. HAMILTONIAN DESCRIPTION OF THE Cr8Ni
MOLECULE RING

Magnetic molecules are emblematic instances of an en-
semble of noninteracting quantum systems embedded in a
condensed matter environment. The synthesis of molecular
magnets has undergone rapid progress in recent years. Each
of those quantum systems are identical molecular units that
can contain as few as two and up to several dozens of para-
magnetic ions �spins�. In our case, they correspond to Cr8Ni
ring molecules. This molecule is one of the many relevant
molecules containing transition-metal ions whose spins are
so strongly exchange coupled that when the temperature is
low enough, their behavior is like single-domain particles
with a certain total spin.19–21

Macroscopically, these materials appear as crystals or
powders. Nonetheless, their intermolecular magnetic interac-
tions are utterly negligible when compared to their intramo-
lecular interactions. Thus, measurements of their magnetic
properties reflect mainly ensemble properties of single mol-
ecules. There are two major advantages in the research on
these molecule aggregates. First, the outstanding degree of
accuracy by which their magnetic dynamics can usually be
modeled; second, the opportunity to chemically engineer
molecules possessing desired physical properties.19–21 In our
case, the interest relies on the study of the Heisenberg model
in situations that are usually discarded when studying that
model in infinite one-, two-, and three-dimensional systems.
Our studies will reinforce the idea that such spin arrays yield
physics caused by the finite size of the system.

The Cr8Ni compound belongs to a wider family of mo-
lecular rings. In molecules with a small number of ions, there
exist big differences in their physics depending on each par-
ticular compound. A first major difference is related to the
number of its ions: odd or even. In this regard, the implica-
tions are mainly twofold: first, having a difference of one ion
in the same family of molecules can cause the molecule to
have a neat magnetic moment or not, therefore changing its
magnetic properties drastically. Second, and interestingly
enough, a molecular ring with completely antiferromagnetic
interactions between nearest-neighbor ions can be a candi-
date to present quantum spin frustration properties if the
number of atoms is odd, while this effect will not generally
be present for even member rings in a given family com-
pound.

As it happens, in the majority of these molecules the lo-
calized single-particle magnetic moments of the ions couple
antiferromagnetically. Then, their spectrum is described
rather well by the Heisenberg model with very few param-
eters because of the high symmetry of the molecular configu-
rations. These coupling parameters correspond to isotropic
nearest-neighbor interaction sometimes augmented by aniso-
tropy terms.

The Cr8Ni compound is one of the first antiferromagnetic
odd-member rings which has been artificially synthesized.

The results of its magnetic properties are interpreted within
the framework of a spin Hamiltonian approach, and they
nicely fit the pattern of the energy levels obtained by inelas-
tic neutron spectroscopy. There exist also reports on its mag-
netic and spin frustration effects.7 In view of these proper-
ties, it has been proposed1 that the behavior of this molecule
can be properly explained with a nearest-neighbor Heisen-
berg model where only two different microscopic couplings
play a role: one is the coupling that parametrizes the strength
of the interaction existing between the Ni and the neighbor
pair of Cr. The other one is the coupling that takes into
account the interaction between the Cr-Cr pairs, which can
be considered the same for each pair. The easy-axis aniso-
tropy term is reported to be very weak now as to play any
role. Therefore, the Hamiltonian that we shall study has the
following form:

H = J�
i=1

7

SCr�i� · SCr�i + 1� + J��SNi · SCr�1� + SNi · SCr�8�� ,

�1�

where, for convenience, the Cr atoms have been numbered
from 1 to 8, these latter being the two neighbors of the Ni
atom. Notice that since the spin of the Ni is equal to SNi=1
and the spin of the Cr atoms is SCr=3 /2, the total spin of the
molecule must be integer.

In Fig. 1 we have plotted some lowest lying energy levels
of this Hamiltonian. In Sec. IV we shall explain how these
numerical results have been obtained with a multitarget
Lanczos method. It can be observed that in some regime of
the coupling constants J� and J, the energy levels are highly
braided and, as a consequence, the ground state has different
value of the total spin depending on the exact value of these
couplings. However, as can be seen from the inset of this
figure, for large values of J� the ground state is always a spin
singlet with a triplet state very close in energy above it. In
this work, we will restrict our study to the antiferromagnetic
�J��0� region and in particular to the region where the
ground state is a singlet. From Fig. 1 we see that this area
corresponds to J��1.5 K, while the region 0�J��1.5 K is
characterized by a ground state with total spin equal to one
�for convenience the computations in Fig. 1 have been done
with a fixed value of J=16 K�.

The interest in the domain where the ground state is a
singlet comes not only from the fact that it spans the most
extension in the antiferromagnetic area but also because the
physics of the real Cr8Ni seems to be in agreement with a
regime close to J=16 K and J�=70 K, with a nonmagnetic
ground state. Therefore, the interest of our study relies on the
fact that it can provide insights into the physics of a not so
well-known state of matter but with a well-defined connec-
tion with experiments in real compounds.

III. IMPURITY INDUCED VBS PICTURE

A valence bond solid is a particular quantum many-body
state that can be understood as follows: given a system of
real particles with total spin S, we can split each one of them
into 2S virtual particles of spin S=1 /2. In order to recover
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the original spins, we enforce these virtual particles to couple
�i.e., symmetrize� among themselves in order to give the
original spin S particles. To create now a wave function with
total spin equal to zero, we make singlets �i.e., antisymme-
trize� out of every pair of virtual particles.

We will denote each of these singlet pairs between virtual
particles as a bond. There are a lot of different possible ways
to fix the bonds between all the virtual particles and, in gen-
eral, the total wave function may have contributions from all
these configurations. There exist however some physical
situations in which only some particular bond configurations,
out of the whole possible set, take part in the wave function:
some systems have a major contribution coming only from
one particular bond arrangement. These systems are com-
monly dubbed as bond crystals. It may also happen that there
exist not one but some few bonds configurations whose
weights are dominant in the total wave function. In this case
the system is called a resonating valence bond solid �RVBS�.
There exists yet another kind of more disordered states, de-
noted �m ,n�-VBS, which we shall see that describe properly
the ground state of the Cr8Ni in the singlet region. A general
�m ,n�-VBS state is built by forming bonds only between
virtual spins belonging to neighbor real particles, with the
numbers m ,n satisfying m+n=2S and S being the spin of the
real particle.

These states are usually translationally invariant �with the
�m ,n�-VBS notation this means that m=n� in those systems
where the Hamiltonian possesses this symmetry. There also
exist dimerized �m ,n�-VBS states that have been shown to
appear in systems where the full translational symmetry of
the Hamiltonian has been partially broken such that still ex-
ists an enlarged unit cell. Typically, this effect can be ob-
tained by introducing an external dimerization coupling con-
stant in the Hamiltonian that still preserves some periodicity.

Our main result in this section is that there is another
mechanism to provide such dimerized �m ,n�-VBS states in
the Cr8Ni ring molecule and whose success precisely resides
in the existence of an impurity within an homogeneous sys-
tem. To understand this mechanism in the particular case of
the Cr8Ni, we resort to the strong coupling limit where the
antiferromagnetic interaction between the Ni and its neigh-
bors is much larger that the interaction among Cr pairs. As
shown in Fig. 2, the two virtual spins comprising the Ni will
be likely to form bonds with the virtual particles in the
neighbor chromiums to satisfy their antiferromagnetic con-
straints. The rest of the virtual spins left will then tend to
form similar bonds with their neighbor partners, giving as a
result a dimerized non translationally invariant VBS. We
would like to stress the fact that the validity of this picture is
rooted in the existence of the Ni impurity. In fact, the physics
of a homogeneous system of Cr atoms is closer to a gapless
critical phase rather than to such a gapped state.

General �m ,n�-VBS states belong to a class of spin liq-
uids which are known to possess an special hidden order that
can be identified by a particular nonlocal order parameter
called the SOP.22–27 This order parameter has proven itself
extremely successful in the task of characterizing diverse
kinds of such states, both in the pure one dimensional cases
and also in less trivial systems such as ladders.25,27 We shall
see that this parameter also allows us to characterize the

Cr8Ni ground state. The definition of the generalized string
order parameter is as follows:24

Ostr��� = lim
�j−i�→�

�Si
z exp�i��

k=i

j−1

Sk
z	Sj

z
 , �2�

where both i=2k�1 and j=2k��1. That is, i and j are both
either odd or even. With this definition the dependence on �
of the string order parameter acting upon an ideal infinite
sized �m ,n�-VBS can be exactly computed24 using the stan-
dard Schwinger bosons representation. We hereby summa-
rize some general properties of this parameter. The first two
ones are formal and contain practical information; the last
ones are those which actually equip the SOP with the pow-
erful capability to determine and characterize valence bond
solids:

�i� the SOP is symmetric with respect �=�.
�ii� In states with time-reversal symmetry, that is, invari-

ant under the operation Si
z→−Si

z, the SOP is a real number.
�iii� Given a generic �m ,n�-VBS state, the number of ze-

ros of this operator in the interval �� �0,2�� coincides with
the number m.

�iv� Two measures of the SOP beginning in adjacent sites
will differ in the order of the numbers m and n. That is, if
one measure gives a �m ,n�-VBS state, the other will be a
�n ,m�-VBS.

In Fig. 3 we have plotted the form of the SOP in an ideal
infinite �1,2�-VBS and a �2,1�-VBS. Notice that all the prop-
erties above hold true and that the shape itself of the SOP is
unique and characteristic of each valence bond solid. In par-
ticular these two cases will be useful later for comparison
with the SOP computed in the finite molecule.

In the rest of the section we will check the valence bond
solid nature of the Cr8Ni molecule. However, there is a
subtle point that must be addressed before moving on to this
task: the � dependence of the SOP as well as the related
properties written above can be only rigorously derived in

FIG. 2. Valence bond solid picture of the Cr8Ni ring molecule.
The bonds established between the two virtual spins in the Ni and
the two virtual spins in the neighbor Cr atoms force a dimerized
pattern in the rest of the chain. This VBS configuration becomes the
dominant one in the strongly coupled impurity limit J��J.
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ideal VBSs with infinite sizes. It must be checked that the
behavior of this operator in the VBS represented in Fig. 2
preserves the expected properties. To face this task we will
use the standard Schwinger bosons representation, which is
particularly well suited to compute matrix elements of spin
operators in valence bond solids. In this representation the
�un-normalized� wave function of the VBS corresponding to
Fig. 2 can be written as

�vbs� = �a0
†b1

† − b0
†a1

†��a1
†b2

† − b1
†a2

†�2�a2
†b3

† − b2
†a3

†��a3
†b4

†

− b3
†a4

†�2�a4
†b5

† − b4
†a5

†��a5
†b6

† − b5
†a6

†�2�a6
†b7

† − b6
†a7

†��a7
†b8

†

− b7
†a8

†�2�a8
†b0

† − b8
†a0

†��0� , �3�

with the notation that the subindex zero refers to the Ni atom
and the rest stands for each of the Cr ones. It can be observed
that all the terms of this wave function belong to a restricted
subspace of the total Fock space where the Bose occupation
numbers ni

a+ni
b are twice the value of the total spin Si. This

fact ensures that the wave function is an eigenstate of each
local spin operator Si; that is, the symmetrization of virtual
particles is implicit in this representation. On the other hand,
the terms within parentheses create a rotationally invariant
bond between adjacent particles. Since the number of par-
ticles involved in this state is small, the limit �j− i�→� in
definition �2� is meaningless, and we will treat the numbers i
and j as free parameters. This freedom will allow us to com-
pute the SOP using different blocks of particles �see Fig. 4�
to check property �iv�. With these considerations in mind the
expression to compute the string order parameter in the ideal
VBS of Eq. �3� is

Ostr��,i, j� =
�vbs�Si

z exp�i��k=i

j−1
Sk

z�Sj
z�vbs�

�vbs�vbs�
�4�

Notice that both the numerator and denominator of this
expression give raise to a number of sums that is exponential

with the number of bonds of the wave function. With the use
of a computer and careful implementation, each mean value
can be obtained from the contribution of two26 terms �the
product of 1013 from the wave-function definition and 1013

from its Hermitian conjugate�. �The action of the operators
of the string order parameter can be absorbed in these terms.�
Moreover, we have checked with our program that in general
less than 1% of the total number of terms contributes a value
different from zero, which simplifies significantly the calcu-
lation. In Fig. 3 we have plotted the string order parameter
computed in the ideal state of Eq. �3�. It can be seen in this
figure that the properties of the SOP described above clearly
hold in this small system and, most important, that the char-
acteristic shape of this parameter is almost identically pre-
served. One important difference can be observed however
and it is precisely at the points �=0,2� �at these points the
SOP is a usual spin-spin correlator� that the SOP in the finite
case does not vanish but shows a certain correlation, while in
larger systems this value decays to zero.

Now that we are familiar with the SOP in ideal valence
bond solids we will perform an analogous study with the
more realistic Cr8Ni molecule described by Hamiltonian �1�.
In Fig. 5 we have plotted the SOP computed in the ground
state of this Hamiltonian with the different configurations
shown in Fig. 4. Since the ground state is a singlet and due to
property �ii� the imaginary parts vanish in all our computa-
tions.

In Fig. 5�a� the curves with high values of J� have two
local minima in the interval �� �0,2�� whose value is com-
patible with zero considering that the system is finite. This
result is consistent with a �2,1�-VBS. The shape of the SOP
is also typical of these states, with two noticeable maxima
placed approximately at �=� /2 and �=3� /2. Accordingly,
the computations shown in Fig. 5�b� shall be consistent with
a �1,2�-VBS as explained above. We see that the shape of the
SOP for the strong coupling curves shares again the main
features of these states, that is, one substantial maximum
placed precisely at �=�. In this case however magnified
spin-spin correlations appear at �=0,2� if we compare them
with the same computation on the ideal state �Fig. 3�. This
increase results naturally, taking into account that the valence
bond solid state in the real molecule appears as a conse-
quence of the antiferromagnetic interaction of the impurity.
The high correlation between spins close to the impurity is
then a necessary payoff to stabilize the ground state in a
global valence bond solid.

In summary, the string order parameter reveals that the
ground state of the Cr8Ni in the strong impurity coupling
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FIG. 3. �Color online� The curves with no symbols represent the
string order parameter for an ideal �1,2�-VBS and �2,1�-VBS with
infinite size. The curves with symbols represent the string order
parameter Ostr�� , i , j� computed in the VBS of Eq. �3� for two dif-
ferent configurations: i and j corresponding to the sites of the Cr1

and Cr7 �solid circles� and to the sites of the Cr2 and Cr6 �empty
circles�.

FIG. 4. Representation of two ways to measure the SOP in the
Cr8Ni ring choosing adjacent starting sites. In the diagram at the top
we break two bonds at the left end and one at the right. This cor-
responds to a �2,1�-VBS. In the diagram at the bottom we have the
same physical configuration but now we are breaking one bond at
the left and two at the right end, which characterizes a �1,2�-VBS.
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limit is consistent with an impurity-mediated mechanism of
spin frustration, the result of which is the dominant and glo-
bal VBS pattern shown in Fig. 2 affected by some local
correlations that appear as a consequence of the finite size of
the system. In finite systems the possibilities to drastically
change the nature of the ground state are limited; that is, the
possibility of a quantum phase transition is excluded and
only a crossing with another energy level can produce this
effect. Therefore, the intermediate J� /J regime can be con-
sidered as some deformation of the strong coupling limit. As
we decrease J� and the Stot=1 state crosses the Stot=0, the
VBS picture breaks down and the measures of the SOP are
not meaningful in the sense that the properties of this opera-
tor in such a state are not well defined.

To conclude this section it is worth mentioning the fact
that the quantum configuration of the Cr8Ni is a valence
bond solid includes this molecule in a wider family of com-
pounds with many representatives in the form of one-

dimensional spin chains and spin ladders. Restricting our-
selves to the former group there exist many candidates as
valence bond solids within the NENP, NTENP, and NDMAP
compound families. In particular for some of these materials
there exist experimental studies �Ref. 28 and references
therein� that make use of magnetization, electron-spin reso-
nance, and inelastic neutron-scattering techniques to study
the properties of the underlying valence bond solid struc-
tures. To the best of our knowledge the Cr8Ni is among the
first ring-shaped valence bond solids that can actually be
synthesized. We expect however that some of the experimen-
tal facts and techniques employed for other VBS compounds
can be also adopted for this material.

IV. FRUSTRATION AND DYNAMICS IN Cr8Ni

As we have already mentioned, the Cr8Ni ring molecule is
frustrated in the sense that the minimum energy of the sys-
tem cannot be obtained minimizing separately each of the
two body terms of Hamiltonian �1�. Another way to see it is
by resorting to the classical limit where each spin is pictured
as a classical vector. Once we set the value of one of those
classical spins, then we can fix one by one the rest of the
spins in order to minimize the local interactions. But in the
end there will be one spin for which the local interaction
with both of its neighbors cannot be minimized at the same
time.

Typically, systems where frustration exists come along
with a rich and very often not so well-known physics.
Roughly speaking, we can say that frustration in general in-
creases the complexity of those systems, both in the physics
they exhibit as well as in the way to approach them. In par-
ticular, there is not a well-defined way to measure the
amount and localization of frustration. An attempt to quan-
tify these effects in Cr8Ni can be done attending to the struc-
tural changes in the ground state as we vary the couplings,
that is, by inspection of the way in which spins in the ring
couple to form the final state. This procedure has a connec-
tion with experimental techniques where the Lande factors of
the ring can be measured. However this procedure is not
suitable to study a rotationally invariant singlet ground state
where the spin is zero. In this section we will study the
behavior of the Cr8Ni molecule by means of computing the
time evolution of some important spin correlators: the spin
autocorrelation of the impurity Ni atom with itself and the
spin correlation between the Ni atoms and each Cr along the
ring. These correlators correspond to the vacuum expectation
value of the time-evolved spin operators SNi�t� and SCri

�t�
projected onto the spin operator of the Ni impurity at t=0,
SNi�0�. This is a way to dynamically probe29–33 the spin
structure in the ground state �	0� of the ring molecule. In
fact, we shall consider the square modulus of those correla-
tors and interpret them as time-evolution probabilities. That
is, we shall consider the following correlators in order to
construct a figure of merit:

CNi�t� ª �	0�SNi�t� · SNi�0��	0� , �5�

and
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FIG. 5. �Color online� �a� SOP computed between the Cr2 and
the Cr6 atoms. �b� SOP computed between the Cr1 and the Cr7

atoms. We have fixed J=16. Considering the interval �� �0,2��
and looking at the curves with high values of J� we see that the
number of zeros in �a� is two, corresponding to a �2,1�-VBS. In �b�
the situation is more confusing due to stronger finite-size effects
that shift the curves toward negative values at �=0 and �=�. With
this correction in mind the graph strongly suggests the existence of
a �1,2�-VBS.
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CCri
�t� ª �	0�SCri

�t� · SNi�0��	0� . �6�

Notice that in a rotationally invariant singlet ground state
�	0� the correlations in the x ,y and z axes have the same
value, and thus, the expressions above can be written as

CNi�t� = 3�	0�SNi
z �t�SNi

z �0��	0� , �7�

CCri
�t� = 3�	0�SCri

z �t�SNi
z �0��	0� . �8�

Since the proportionality factor does not provide any addi-
tional information we will discard it from now on and will
consider the bare z-axis projection correlators. The time de-
pendency of the operators is given by the usual Heisenberg
picture,

O�t� = eiHtO�0�e−iHt. �9�

The idea behind this figure of merit to measure the dynami-
cal correlations between spins is similar to the static cor-
relator used to measure spin correlations in space separated
sites i and j of the ring �	0�SCri

�i� ·SNi�j��	0�. This static
correlator measures spatial correlations, while our purpose is
to measure time-evolved correlations which will probe not
only the ground state physics but also the excited states
physics.

We next explain briefly the numerical method used to
evaluate these correlators. After that we shall show and dis-
cuss the results.

A. Numerical method

Hamiltonian �1� is SU�2� rotational invariant. That is, it
commutes both with the total spin and the z-axis projection
of the total spin. In Table I we show the dimensions of the
subspaces corresponding to the conserved quantum numbers
of these operators. These sizes are in the limit to perform
exact diagonalization but lie however within the domain
reachable for a Lanczos method.

To do our computations we will make use of an adapted
version of the Lanczos algorithm specific to compute real-
time dynamics.34–36 In this framework it can be shown that
the correlators written above can be expressed as

Ci�t� = �
j=0

M

�	0�SCr�i�
z �t�SNi

z �0��	̃ j��	̃ j�SNi
z �0��	0�e−i�
̃j−E0�t,

�10�

where M stands for the dimension of the Krylov space
K�H ,q0 ,M� such that K�H ,q0 ,M�=K�H ,q0 ,M +1�, with
q0ªSNi

z �	0�. That is, M is the dimension of the largest in-
variant subspace generated by successive applications of the
Hamiltonian H upon the seed vector q0=SNi

z �	0�. The vectors

�	̃ j� are the approximated eigenvectors computed in this Kry-
lov subspace, 
̃ j are the energies of these eigenvectors, and
E0 stands for the energy of the ground state.

The number M is typically much lower than the total di-
mension of the Hilbert space but still high to numerically
compute a complete basis of the Krylov subspace. Therefore,
the approximation in this method resides in the fact that we

will substitute the dimension M with a lower number of vec-
tors that still serve as a complete basis for these correlators.

In order to obtain the most accurate results and represen-

tations of the eigenvectors of the Hamiltonian �	̃ j�, we have
not used the same Krylov space to compute them all. Instead
we have performed a Lanczos iteration to find the ground
state. After that, the Lanczos iteration is restarted with the
previously found eigenvectors projected out of the subspace
to find the next excited state, and so on and so forth until we
have computed the desired number of eigenvectors. In par-
ticular, to compute the correlators described before we have
used 400 eigenvectors of the Hamiltonian. With regards to
the tolerance in the eigenvalues, we have set it to 10−14 al-
lowing a maximum dimension of each Krylov space of 350
vectors. Were we in an exact situation, these vectors should
be normalized to one and be orthogonal among themselves.
Let us call V the matrix whose columns are these eigenvec-
tors. We have checked that we obtain the following accuracy:

�tVV − 1�  10−4, �11�

which can be considered a low value for such a large number
of eigenvectors. Moreover, as another check of the accuracy
of the eigenvectors we have computed the total spin of each
one of them and we have obtained integral values up to pre-
cisions of 10−6 in the vast majority of them. As for the in-
variance of the Hamiltonian under reflection with respect to
the Ni atom, we have checked that symmetric one and two
body correlators evaluated on every eigenvector are the same
up to the fourth or fifth decimal digit.

In order to check how complete our set of eigenvectors is,
we have compared the value at t=0 computed using Eqs. �5�

TABLE I. Dimension of each subspace with well-defined quan-
tum numbers out of the total Hilbert space of a Cr8Ni ring. The
second column corresponds to the subspaces with well-defined total
spin. The third one are the sectors with well-defined value of the
z-axis projection of the total spin. In this last case for each value in
the first column we must consider the positive and negative cases.

Stot , �Stot
z Dimension Dimension

0 1000 23548

1 2764 22548

2 3905 19784

3 4256 15879

4 3900 11623

5 3095 7723

6 2150 4628

7 1308 2478

8 692 1170

9 314 478

10 119 164

11 36 45

12 8 9

13 1 1

Total: 196608 196608
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and �6� with the values obtained measuring the correlators in
the ground state without the projectors in between. Table II
shows these values and the relative error. It can be seen that
the agreement is excellent for low values of J� while it goes
worse for higher values of the coupling constant. At this
point it is worth recalling that the accuracy of the dynamical
Lanczos method can always be increased using more vectors
of the Krylov subspace. In our case, retaining m=400 vectors
and restricted to the chosen J� interval that we have studied,
the errors stand within reliable limits and all the accuracy
checks confirm that our numerical results are good enough so
as to interpret them on physical grounds with respect to the
spin frustration effects described in Secs. I–III.

B. Results

In Secs. I–III we have proposed and checked with the
proper order parameters a static picture of the ground state of

the Cr8Ni ring. In the limit when the Ni is weakly coupled to
the Cr bulk �J� /J�1� the system is accurately described by
an isolated Ni atom and an open Cr8 chain. On the other
hand, when the impurity is strongly coupled �J� /J�1� the
ring possess a dominant contribution in the form of a �2,1�-
VBS ground state with some local correlations around the Ni
atom due to the finite size of the sample. From the point of
view of frustration, in this limit the impurity acquires strong
antiferromagnetic compromises with both of its neighbors
that cannot satisfy simultaneously. Frustration is known to
impose complex constraints that can destabilize, deform, and
even produce states of matter. On the other hand, the dynam-
ics of each spin of the system is highly influenced by these
constraints. In the following paragraphs we will see that the
self-correlation of the Ni impurity and the rest of correlators
with the Cr atoms allows us to naturally establish a relation
with the amount of frustration.

In Figs. 6 and 7 we have plotted correlators �5� and �6� for
a fixed value of the constant J=16 K and different values of
J�. The Cr8Ni ring is invariant under reflection with respect
to the impurity site, and therefore we will only provide the
correlators with the Ni itself and the Cr atoms numbered
from 1 to 4 �with the notation of Fig. 2�. The correlations
with the Cr atoms numbered from 5 to 8 are the same as their
symmetric counterparts. We want to provide these magni-
tudes with the meaning of a time-evolved probability, and
hence we will consider only their modulus. It is worth notic-
ing that the time correlators mentioned before at t=0 are real
numbers, whereas for arbitrary values of t they are complex
numbers. For convention, in the graphs where we plot the
modulus of these correlators we will provide them with the
same sign of their real value at t=0 to make explicit the

TABLE II. Relative error between the Ni self-correlation at t
=0 using Eq. �5� with M =400 eigenstates and the value
�	0�SNi

z SNi
z �	0� in the ground state, which is equal to 2/3.

J� CNi�0�
Error
�%�

2 0.66666 0.00002

10 0.66666 0.0009

20 0.66653 0.02

30 0.66512 0.2

40 0.65660 2

50 0.57469 14
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FIG. 6. �Color online� Modulus of the spin correlation of the impurity Ni atom with itself and with the rest of the Cr atoms. The graphs
have been done with a value J=16 K and �a� J�=2 K, �b� J�=10 K, and �c� J�=20 K. For convention the sign of the correlators has been
chosen to coincide with the sign of the correlation at t=0, which is a real number.
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ferromagnetic or antiferromagnetic nature that they possess
in the static t=0 ground state.

In fact, we can observe in these graphs that the fingerprint
of an antiferromagnetic order is present in the initial t=0
ground state and shows up in the alternation of the signs of
the correlators. Notice also a signal of frustration in the fact
that this alternation fails in the Cr4 and its symmetric coun-
terpart Cr5 �due to the reflection invariance of the ring their
value is equal with the same sign�, where the correlations
reveal that both spins are oriented in the same direction with
respect to the spin of the Ni. Remarkably this ferromagnetic
defect is a consequence only of the reflection invariance of
the Hamiltonian.

From these graphs we can also infer that the average cor-
relation of each spin with the impurity is little sensitive to the
strength of the coupling constant J�, although the amplitude
of the deviations with respect to this average value increases
with it. It can be also observed that the impossibility of the
Ni atom to minimize its local interactions translates in rela-
tively high correlations: in the coupling of spin 1 particle
with spin 3/2 one can yield a total spin equal to 1/2, 3/2, and
5/2 with corresponding values of �S1

zS2
z� equal to −5 /6, −1 /3,

and 1/2, while the computed correlations of the Ni with the
Cr1 are well above the minimum value −5 /6.

The most important observation is that the dynamics of
the correlators exhibit a nontrivial sort of periodicity. That is,
from the shape of the curves it seems that there exist many
modulating components but a dominant pattern of oscilla-
tions is apparent. Moreover, the frequency of this pattern
clearly increases with increasing values of the impurity cou-
pling J�, i.e., as we move toward more frustrated regimes,
but not in the same way for all the spins. We have captured

in Fig. 8 the frequency of the dominant oscillatory pattern of
each correlation. The graph highlights two different tenden-
cies of the correlations depending on the considered spins:
the frequency of the Ni self-correlation as well as the corre-
lations of the Ni spin with the Cr1 and Cr2 spins increasing
with J�. Moreover in the case of the Ni self-correlation the
relation of these two variables is linear with a surprising
accuracy. On the other hand the Cr3 and Cr4 are less affected
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FIG. 7. �Color online� Modulus of the spin correlation of the impurity Ni atom with itself and with the rest of the Cr atoms. The graphs
have been done with a value J=16 K and �a� J�=30 K, �b� J�=40 K, �c� J�=50 K. For convention the sign of the correlators has been
chosen to coincide with the sign of the correlation at t=0, which is a real number.
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FIG. 8. �Color online� The number of oscillations has been ob-
tained counting the number of minima in a wide time interval and
dividing by the total time. The Ni, Cr1, and Cr2 have increasing
frequencies with J� which corresponds to more frustrated regimes.
In particular for the Ni spin the relation of these variables is linear
up to a high precision. In the case of the Cr3 and Cr4 spins the
frequency is hardly affected by J�.
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by the impurity spin and the frequency remains almost con-
stant in the wide range considered.

In Fig. 9 we have plotted the same real-time correlations
with an election of the coupling constants J=16 K and J�
=1 K such that the ground state is a triplet. In this case the
ground state is not rotationally invariant and the z-axis pro-
jection of the correlators is not proportional to scalar correla-
tors �5� and �6�. For our purposes however, these magnitudes
suffice to realize the different nature of both the singlet and
triplet ground states: first of all is that not one but two domi-
nant patterns of oscillation are well distinguishable in the
triplet regime. Second and also a major difference is that the
scale in this regime is some orders of magnitude smaller than
the singlet case.

The existence of this oscillatory behavior seems natural in
a frustrated system where there does not exist a natural equi-
librium position for each spin or where the resulting equilib-
rium configuration may result as unstable. In a system com-
posed of classical spins these oscillations can be interpreted
as the necessary movements of each spin to satisfy the frus-
trated interactions, becoming faster as we blur the concrete
equilibrium positions with the frustrating interactions.

The results in Fig. 8 point toward a regime where the
frustration introduced by the Ni impurity has strong local
dynamical effects in the nearest and next-nearest Cr neigh-
bors while the rest of the spins perceive the impurity
screened by this closer shell of atoms, and therefore their
dynamics is little affected by it. These results also show that
the correlators proposed to study the frustration of the system
indeed have the behavior expected for a suitable estimator in
order to measure the intuitive idea we have about the amount
of frustration in a certain system.

V. CONCLUSIONS

In recent years, considerable efforts have been devoted to
synthesizing and investigating magnetic systems of nano-
scale dimension that comprise a controllable number of

transition-metal ions. Highly symmetrical clusters of almost
planar ring shape are among such topical molecular nano-
magnets. In particular, the bimetallic ring molecule Cr8Ni is
the first antiferromagnetic ring with an odd number of spins.
Thus, it is a remarkable quantum system to test fundamental
magnetic properties and, in particular, the spin frustration
effects.

In this work, we have studied the Cr8Ni frustrated ring in
the regime where the ground state is a singlet. That is, with a
fixed value J=16 K this region corresponds to J��1.5 K.
In this regard, the experimental characterization of a Cr8Ni
molecule places the real strengths present in the real system
close to J=16 K and J�=70 K, well within the singlet re-
gion.

As we let the interaction strength of the Ni impurity be
stronger than that between the Cr atoms, the ring stabilizes in
a ground state with the quantum properties of a dimerized
VBS. The picture that explains this behavior in terms of the
possible bonds between neighbor particles comes clear from
Fig. 2. Such a VBS state constitutes an example of a spin
liquid with an intrinsic order that can be measured by means
of some particular nonlocal order parameters. In Fig. 5 we
show the computations of this order parameter on the ground
state and its behavior supports neatly the VBS picture. In this
regard, some finite-size effects can be observed in the order
parameter that reveals a competition between the physics in
the bulk of the ring and the strong effects, possibly mediated
by the system frustration, which occurs in the vicinity of the
Ni atom.

In Sec. II of this paper we have studied the role of the
frustration in such a VBS state by means of computing the
real-time evolution of the spin correlators between the atoms
in the ring. In particular, we have found that the amount of
frustration can be related to the frequency in the oscillatory
behavior of this correlators. This relation can be naturally
established from the observation that the oscillations in the
system become faster as we move to the more frustrated
regime J��J. Such an oscillatory behavior is natural in a
system where no natural equilibrium is allowed due to the
frustration. However, the spin correlators reveal that the at-
oms that are most affected by this frustration are the Ni im-
purity itself and those Cr atoms that are closer to it, e.g., Cr1
and Cr2, while the effect of the impurity strength seems to be
less influent in the Cr3 and Cr4 atoms. We believe that the
methods and numerical techniques used in this work are ver-
satile enough and can be extended to a variety of other na-
nomolecular magnetic compounds.
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